Artificial intelligence software in applications Archives

Artificial intelligence software in applications Archives

artificial intelligence software in applications Archives

artificial intelligence software in applications Archives

Applications of artificial intelligence

Artificial intelligence, defined as intelligence exhibited by machines, has many applications in today's society. More specifically, it is Weak AI, the form of AI where programs are developed to perform specific tasks, that is being utilized for a wide range of activities including medical diagnosis, electronic trading platforms, robot control, and remote sensing. AI has been used to develop and advance numerous fields and industries, including finance, healthcare, education, transportation, and more.

Tools for computer science[edit]

AI researchers have created many tools to solve the most difficult problems in computer science. Many of their inventions have been adopted by mainstream computer science and are no longer considered a part of AI. (See AI effect.) According to Russell & Norvig (2003, p. 15) harvtxt error: no target: CITEREFRussellNorvig2003 (help), all of the following were originally developed in AI laboratories: time sharing, interactive interpreters, graphical user interfaces and the computer mouse, Rapid application development environments, the linked list data structure, automatic storage management, symbolic programming, functional programming, dynamic programming and object-oriented programming.

AI can be used to potentially determine the developer of anonymous binaries.[citation needed]

AI can be used to create other AI. For example, around November 2017, Google's AutoML project to evolve new neural net topologies created NASNet, a system optimized for ImageNet and POCO F1. According to Google, NASNet's performance exceeded all previously published ImageNet performance.[1]

Economic and social challenges[edit]

AI for Good is an ITU initiative supporting institutions employing AI to tackle some of the world's greatest economic and social challenges. For example, the University of Southern California launched the Center for Artificial Intelligence in Society, with the goal of using AI to address socially relevant problems such as homelessness. At Stanford, researchers are using AI to analyze satellite images to identify which areas have the highest poverty levels.[2]

Agriculture[edit]

In agriculture new AI advancements show improvements in gaining yield and to increase the research and development of growing crops. New artificial intelligence now predicts the time it takes for a crop like a tomato to be ripe and ready for picking thus increasing efficiency of farming.[3] These advances go on including Crop and Soil Monitoring, Agricultural Robots, and Predictive Analytics. Crop and soil monitoring uses new algorithms and data collected on the field to manage and track the health of crops making it easier and more sustainable for the farmers.[4]

More specializations of AI in agriculture is one such as greenhouse automation, simulation, modeling, and optimization techniques.

Due to the increase in population and the growth of demand for food in the future, there will need to be at least a 70% increase in yield from agriculture to sustain this new demand. More and more of the public perceives that the adaption of these new techniques and the use of Artificial intelligence will help reach that goal.[5]

Cybersecurity[edit]

The cybersecurity arena faces significant challenges in the form of large-scale hacking attacks of different types that harm organizations of all kinds and create billions of dollars in business damage. Artificial intelligence and Natural Language Processing (NLP) has begun to be used by security companies - for example, SIEM (Security Information and Event Management) solutions. The more advanced of these solutions use AI and NLP to automatically sort the data in networks into high risk and low-risk information. This enables security teams to focus on the attacks that have the potential to do real harm to the organization, and not become victims of attacks such as Denial of Service (DoS), Malware and others.

Education[edit]

AI tutors could allow for students to get extra, one-on-one help. They could also reduce anxiety and stress for some students, that may be caused by tutor labs or human tutors.[6] In future classrooms, ambient informatics can play a beneficial role. Ambient informatics is the idea that information is everywhere in the environment and that technologies automatically adjust to your personal preferences.[7] Study devices could be able to create lessons, problems, and games to tailor to the specific student's needs, and give immediate feedback.

But AI can also create a disadvantageous environment with revenge effects, if technology is inhibiting society from moving forward and causing negative, unintended effects on society.[8] An example of a revenge effect is that the extended use of technology may hinder students’ ability to focus and stay on task instead of helping them learn and grow.[9] Also, AI has been known to lead to the loss of both human agency and simultaneity.[7]

Finance[edit]

Financial institutions have long used artificial neural network systems to detect charges or claims outside of the norm, flagging these for human investigation. The use of AI in banking can be traced back to 1987 when Security Pacific National Bank in the US set-up a Fraud Prevention Task force to counter the unauthorized use of debit cards.[10] Programs like Kasisto and Moneystream are using AI in financial services.

Banks use artificial intelligence systems today to organize operations, maintain book-keeping, invest in stocks, and manage properties. AI can react to changes overnight or when business is not taking place.[11] In August 2001, robots beat humans in a simulated financial trading competition.[12] AI has also reduced fraud and financial crimes by monitoringbehavioral patterns of users for any abnormal changes or anomalies.[13][14][15]

AI is increasingly being used by corporations. Jack Ma has controversially predicted that AI CEO's are 30 years away.[16][17]

The use of AI machines in the market in applications such as online trading and decision making has changed major economic theories.[18] For example, AI-based buying and selling platforms have changed the law of supply and demand in that it is now possible to easily estimate individualized demand and supply curves and thus individualized pricing. Furthermore, AI machines reduce information asymmetry in the market and thus making markets more efficient while reducing the volume of trades[citation needed]. Furthermore, AI in the markets limits the consequences of behavior in the markets again making markets more efficient[citation needed]. Other theories where AI has had impact include in rational choice, rational expectations, game theory, Lewis turning point, portfolio optimization and counterfactual thinking[citation needed].. In August 2019, the AICPA introduced an AI training course for accounting professionals.[19]

Trading and investment[edit]

Algorithmic trading involves the use of complex AI systems to make trading decisions at speeds several orders of magnitudes greater than any human is capable of, often making millions of trades in a day without any human intervention. Such trading is called High-frequency Trading, and it represents one of the fastest growing sectors in financial trading. Many banks, funds, and proprietary trading firms now have entire portfolios which are managed purely by AI systems. Automated trading systems are typically used by large institutional investors, but recent years have also seen an influx of smaller, proprietary firms trading with their own AI systems.[20]

Several large financial institutions have invested in AI engines to assist with their investment practices. BlackRock’s AI engine, Aladdin, is used both within the company and to clients to help with investment decisions. Its wide range of functionalities includes the use of natural language processing to read text such as news, broker reports, and social media feeds. It then gauges the sentiment on the companies mentioned and assigns a score. Banks such as UBS and Deutsche Bank use an AI engine called Sqreem (Sequential Quantum Reduction and Extraction Model) which can mine data to develop consumer profiles and match them with the wealth management products they’d most likely want.[21] Goldman Sachs uses Kensho, a market analytics platform that combines statistical computing with big data and natural language processing. Its machine learning systems mine through hoards of data on the web and assess correlations between world events and their impact on asset prices.[22]Information Extraction, part of artificial intelligence, is used to extract information from live news feed and to assist with investment decisions.[23]

Personal finance[edit]

Several products are emerging that utilize AI to assist people with their personal finances. For example, Digit is an app powered by artificial intelligence that automatically helps consumers optimize their spending and savings based on their own personal habits and goals. The app can analyze factors such as monthly income, current balance, and spending habits, then make its own decisions and transfer money to the savings account.[24] Wallet.AI, an upcoming startup in San Francisco, builds agents that analyze data that a consumer would leave behind, from Smartphone check-ins to tweets, to inform the consumer about their spending behavior.[25]

Robo-advisors are becoming more widely used in the investment management industry. Robo-advisors provide financial advice and portfolio management with minimal human intervention. This class of financial advisers work based on algorithms built to automatically develop a financial portfolio according to the investment goals and risk tolerance of the clients. It can adjust to real-time changes in the market and accordingly calibrate the portfolio.[26]

Underwriting[edit]

An online lender, Upstart, analyzes vast amounts of consumer data and utilizes machine learning algorithms to develop credit risk models that predict a consumer's likelihood of default. Their technology will be licensed to banks for them to leverage for their underwriting processes as well.[27]

ZestFinance developed its Zest Automated Machine Learning (ZAML) Platform specifically for credit underwriting as well. This platform utilizes machine learning to analyze tens of thousands of traditional and nontraditional variables (from purchase transactions to how a customer fills out a form) used in the credit industry to score borrowers. The platform is particularly useful to assign credit scores to those with limited credit histories, such as millennials.[28]

Audit[edit]

For financial statements audit, AI makes continuous audit possible. AI tools could analyze many sets of different information immediately. The potential benefit would be the overall audit risk will be reduced, the level of assurance will be increased and the time duration of audit will be reduced.[29]

History[edit]

The 1980s is really when AI started to become prominent in the finance world. This is when expert systems became more of a commercial product in the financial field. “For example, Dupont had built 100 expert systems which helped them save close to $10 million a year.”[30] One of the first systems was the Protrader expert system designed by K.C. Chen and Ting-peng Lian that was able to predict the 87-point drop in DOW Jones Industrial Average in 1986. “The major junctions of the system were to monitor premiums in the market, determine the optimum investment strategy, execute transactions when appropriate and modify the knowledge base through a learning mechanism.”[31]

One of the first expert systems that helped with financial plans was created by Applied Expert Systems (APEX) called the PlanPower. It was first commercially shipped in 1986. Its function was to help give financial plans for people with incomes over $75,000 a year. That then led to the Client Profiling System that was used for incomes between $25,000 and $200,000 a year.[32]

The 1990s was a lot more about fraud detection. One of the systems that was started in 1993 was the FinCEN Artificial Intelligence system (FAIS). It was able to review over 200,000 transactions per week and over two years it helped identify 400 potential cases of money laundering which would have been equal to $1 billion.[33] Although expert systems did not last in the finance world, it did help jump-start the use of AI and help make it what it is today.[citation needed]

Government[edit]

Artificial intelligence in government consists of applications and regulation. Artificial intelligence paired with facial recognition systems may be used for mass surveillance. This is already the case in some parts of China.[34][35] Artificial intelligence has also competed in the Tama City mayoral elections in 2018.

In 2019, the tech city of Bengaluru in India is set to deploy AI managed traffic signal systems across the 387 traffic signals in the city. This system will involve use of cameras to ascertain traffic density and accordingly calculate the time needed to clear the traffic volume which will determine the signal duration for vehicular traffic across streets.[36]

Military[edit]

The United States and other nations are developing AI applications for a range of military functions.[37] The main military applications of Artificial Intelligence and Machine Learning are to enhance C2, Communications, Sensors, Integration and Interoperability.[38] AI research is underway in the fields of intelligence collection and analysis, logistics, cyber operations, information operations, command and control, and in a variety of semiautonomous and autonomous vehicles.[37] Artificial Intelligence technologies enable coordination of sensors and effectors, threat detection and identification, marking of enemy positions, target acquisition, coordination and deconfliction of distributed Join Fires between networked combat vehicles and tanks also inside Manned and Unmanned Teams (MUM-T).[38] AI has been incorporated into military operations in Iraq and Syria.[37]

Worldwide annual military spending on robotics rose from US$5.1 billion in 2010 to US$7.5 billion in 2015.[39][40] Military drones capable of autonomous action are widely considered a useful asset.[41] Many artificial intelligence researchers seek to distance themselves from military applications of AI.[38]

Health[edit]

Healthcare[edit]

X-ray of a hand, with automatic calculation of bone age by a computer software

AI in healthcare is often used for classification, whether to automate initial evaluation of a CT scan or EKG or to identify high-risk patients for population health. The breadth of applications is rapidly increasing. As an example, AI is being applied to the high-cost problem of dosage issues—where findings suggested that AI could save $16 billion. In 2016, a groundbreaking study in California found that a mathematical formula developed with the help of AI correctly determined the accurate dose of immunosuppressant drugs to give to organ patients.[42]

Artificial intelligence is assisting doctors. According to Bloomberg Technology, Microsoft has developed AI to help doctors find the right treatments for cancer.[43] There is a great amount of research and drugs developed relating to cancer. In detail, there are more than 800 medicines and vaccines to treat cancer. This negatively affects the doctors, because there are too many options to choose from, making it more difficult to choose the right drugs for the patients. Microsoft is working on a project to develop a machine called "Hanover"[citation needed]. Its goal is to memorize all the papers necessary to cancer and help predict which combinations of drugs will be most effective for each patient. One project that is being worked on at the moment is fighting myeloid leukemia, a fatal cancer where the treatment has not improved in decades. Another study was reported to have found that artificial intelligence was as good as trained doctors in identifying skin cancers.[44] Another study is using artificial intelligence to try to monitor multiple high-risk patients, and this is done by asking each patient numerous questions based on data acquired from live doctor to patient interactions.[45] One study was done with transfer learning, the machine performed a diagnosis similarly to a well-trained ophthalmologist, and could generate a decision within 30 seconds on whether or not the patient should be referred for treatment, with more than 95% accuracy.[46]

According to CNN, a recent study by surgeons at the Children's National Medical Center in Washington successfully demonstrated surgery with an autonomous robot. The team supervised the robot while it performed soft-tissue surgery, stitching together a pig's bowel during open surgery, and doing so better than a human surgeon, the team claimed.[47] IBM has created its own artificial intelligence computer, the IBM Watson, which has beaten human intelligence (at some levels). Watson has struggled to achieve success and adoption in healthcare.[48]

Artificial neural networks are used as clinical decision support systems for medical diagnosis, such as in Concept Processing technology in EMR software.

Other tasks in medicine that can potentially be performed by artificial intelligence and are beginning to be developed include:

Workplace health and safety[edit]

AI may increase the scope of work tasks where a worker can be removed from a situation that carries hazards such as stress, overwork, musculoskeletal injuries, by having the AI perform the tasks instead.[53] This can expand the range of affected job sectors beyond traditional automation into white-collar and service sector jobs such as in medicine, finance, and information technology.[54] As an example, call center workers face extensive health and safety risks due to its repetitive and demanding nature and its high rates of micro-surveillance. AI-enabled chatbots lower the need for humans to perform the most basic call center tasks.[53]

Machine learning used for people analytics to make predictions about worker behavior could be used to improve worker health. For example, sentiment analysis may be used to spot fatigue to prevent overwork.[53]Decision support systems have a similar ability to be used to, for example, prevent industrial disasters or make disaster response more efficient.[55] For manual material handling workers, predictive analytics and artificial intelligence may be used to reduce musculoskeletal injury.[56]Wearable sensors may also enable earlier intervention against exposure to toxic substances, and the large data sets generated could improve workplace health surveillance, risk assessment, and research.[55]

AI can also be used to make the workplace safety and health workflow more efficient. One example is coding of workers' compensation claims.[57][58] AI‐enabled virtual reality systems may be useful for safety training for hazard recognition.[55] Artificial intelligence may be used to more efficiently detect near misses, which are important in reducing accident rates, but are often underreported.[59]

Law[edit]

Legal analysis[edit]

Artificial intelligence (AI) is becoming a mainstay component of law-related professions. In some circumstances, this analytics-crunching technology is using algorithms and machine learning to do work that was previously done by entry-level lawyers.[citation needed]

In Electronic Discovery (eDiscovery), the industry has been focused on machine learning (predictive coding/technology assisted review), which is a subset of AI. To add to the soup of applications, Natural Language Processing (NLP) and Automated Speech Recognition (ASR) are also in vogue in the industry.[60]

Law enforcement and legal proceedings[edit]

Algorithms already have numerous applications in legal systems. An example of this is COMPAS, a commercial program widely used by U.S. courts to assess the likelihood of a defendant becoming a recidivist.[61]

Some are concerned about algorithmic bias, that AI programs may unintentionally become biased after processing data that exhibits bias.[62]ProPublica claims that the average COMPAS-assigned recidivism risk level of black defendants is significantly higher than the average COMPAS-assigned risk level of white defendants.[61]

Service sector[edit]

Human resources and recruiting[edit]

Another application of AI is in the human resources and recruiting space. There are three ways AI is being used by human resources and recruiting professionals: to screen resumes and rank candidates according to their level of qualification, to predict candidate success in given roles through job matching platforms, and rolling out recruiting chatbots that can automate repetitive communication tasks.[citation needed] Typically, resume screening involves a recruiter or other HR professional scanning through a database of resumes.

Job search[edit]

The job market has seen a notable change due to artificial intelligence implementation. It has simplified the process for both recruiters and job seekers (i.e., Google for Jobs and applying online). According to Raj Mukherjee from Indeed.com, 65% of people launch a job search again within 91 days of being hired. AI-powered engine streamlines the complexity of job hunting by operating information on job skills, salaries, and user tendencies, matching people to the most relevant positions. Machine intelligence calculates what wages would be appropriate for a particular job, pulls and highlights resume information for recruiters using natural language processing, which extracts relevant words and phrases from text using specialized software. Another application is an AI resume builder which requires 5 minutes to compile a CV as opposed to spending hours doing the same job.[citation needed] In the AI age chatbots assist website visitors and solve daily workflows. Revolutionary AI tools complement people's skills and allow HR managers to focus on tasks of higher priority. However, Artificial Intelligence's impact on jobs research suggests that by 2030 intelligent agents and robots can eliminate 30% of the world's human labor. Moreover, the research proves automation will displace between 400 and 800 million employees. Glassdoor's research report states that recruiting and HR are expected to see much broader adoption of AI in job market 2018 and beyond.[63][64]

Marketing and advertizing[edit]

It is possible to use AI to predict or generalize the behavior of customers from their digital footprints in order to target them with personalized promotions or build customer personas automatically.[65] A documented case reports that online gambling companies were using AI to improve customer targeting.[66]

Moreover, the application of Personality computing AI models can help reduce the cost of advertising campaigns by adding psychological targeting to more traditional sociodemographic or behavioral targeting.[67]

Online and telephone customer service[edit]

Artificial intelligence is implemented in automated online assistants that can be seen as avatars on web pages.[68] It can avail for enterprises to reduce their operation and training cost.[68] A major underlying technology to such systems is natural language processing.[68]Pypestream uses automated customer service for its mobile application designed to streamline communication with customers.[69]

Major companies are investing in AI to handle difficult customer in the future. Google's most recent development analyzes language and converts speech into text. The platform can identify angry customers through their language and respond appropriately.[70]

Hospitality[edit]

In the hospitality industry, Artificial Intelligence based solutions are used to reduce staff load and increase efficiency[71] by cutting repetitive tasks frequency, trends analysis, guest interaction, and customer needs prediction.[72] Hotel services backed by Artificial Intelligence are represented in the form of a chatbot,[73] application, virtual voice assistant and service robots.

Media and e-commerce[edit]

Some AI applications are geared towards the analysis of audiovisual media content such as movies, TV programs, advertisement videos or user-generated content. The solutions often involve computer vision, which is a major application area of AI.

Typical use case scenarios include the analysis of images using object recognition or face recognition techniques, or the analysis of video for recognizing relevant scenes, objects or faces. The motivation for using AI-based media analysis can be — among other things — the facilitation of media search, the creation of a set of descriptive keywords for a media item, media content policy monitoring (such as verifying the suitability of content for a particular TV viewing time), speech to text for archival or other purposes, and the detection of logos, products or celebrity faces for the placement of relevant advertisements.

Media analysis AI companies often provide their services over a REST API that enables machine-based automatic access to the technology and allows machine-reading of the results. For example, IBM, Microsoft, and Amazon allow access to their media recognition technology by using RESTful APIs.

Deepfakes[edit]

In June 2016, a research team from the visual computing group of the Technical University of Munich and from Stanford University developed Face2Face,[74] a program which animates the face of a target person, transposing the facial expressions of an exterior source. The technology has been demonstrated animating the lips of people including Barack Obama and Vladimir Putin. Since then, other methods have been demonstrated based on deep neural network, from which the name "deepfake" was taken.

In September 2018, the U.S. Senator Mark Warner proposed to penalize social media companies that allow sharing of deepfake documents on their platform.[75]

Vincent Nozick, a researcher from the Institut Gaspard Monge, found a way to detect rigged documents by analyzing the movements of the eyelid.[citation needed] The DARPA (a research group associated with the U.S. Department of Defense) has given 68 million dollars to work on deepfake detection.[citation needed] In Europe, the Horizon 2020 program financed InVid, software designed to help journalists to detect fake documents.[citation needed]

Deepfakes can be used for comedic purposes, but are better known for being used for fake news and hoaxes. Audio deepfakes, and AI software capable of detecting deepfakes and cloning human voices after 5 seconds of listening time also exist.[76][77][78][79][80][81]

Music[edit]

While the evolution of music has always been affected by technology, artificial intelligence has enabled, through scientific advances, to emulate, at some extent, human-like composition.

Among notable early efforts, David Cope created an AI called Emily Howell that managed to become well known in the field of Algorithmic Computer Music.[82] The algorithm behind Emily Howell is registered as a US patent.[83]

The AI Iamus created 2012 the first complete classical album fully composed by a computer.

Other endeavours, like AIVA (Artificial Intelligence Virtual Artist), focus on composing symphonic music, mainly classical music for film scores.[84] It achieved a world first by becoming the first virtual composer to be recognized by a musical professional association.[85]

Artificial intelligences can even produce music usable in a medical setting, with Melomics’s effort to use computer-generated music for stress and pain relief.[86]

Moreover, initiatives such as Google Magenta, conducted by the Google Brain team, want to find out if an artificial intelligence can be capable of creating compelling art.[87]

At Sony CSL Research Laboratory, their Flow Machines software has created pop songs by learning music styles from a huge database of songs. By analyzing unique combinations of styles and optimizing techniques, it can compose in any style.

Another artificial intelligence musical composition project, The Watson Beat, written by IBM Research, doesn't need a huge database of music like the Google Magenta and Flow Machines projects since it uses Reinforcement Learning and Deep Belief Networks to compose music on a simple seed input melody and a select style. Since the software has been open sourced[88] musicians, such as Taryn Southern[89] have been collaborating with the project to create music.

News, publishing and writing[edit]

The company Narrative Science makes computer-generated news and reports commercially available, including summarizing team sporting events based on statistical data from the game in English. It also creates financial reports and real estate analyses.[90] Similarly, the company Automated Insights generates personalized recaps and previews for Yahoo SportsFantasy Football.[91] The company is projected to generate one billion stories in 2014, up from 350 million in 2013.[92] The organisation OpenAI has also created an AI capable of writing text.[93]

Echobox is a software company that helps publishers increase traffic by 'intelligently' posting articles on social media platforms such as Facebook and Twitter.[94] By analysing large amounts of data, it learns how specific audiences respond to different articles at different times of the day. It then chooses the best stories to post and the best times to post them. It uses both historical and real-time data to understand to what has worked well in the past as well as what is currently trending on the web.[95]

Another company, called Yseop, uses artificial intelligence to turn structured data into intelligent comments and recommendations in natural language. Yseop is able to write financial reports, executive summaries, personalized sales or marketing documents and more at a speed of thousands of pages per second and in multiple languages including English, Spanish, French & German.[96]

Boomtrain's is another example of AI that is designed to learn how to best engage each individual reader with the exact articles—sent through the right channel at the right time—that will be most relevant to the reader. It's like hiring a personal editor for each individual reader to curate the perfect reading experience.

IRIS.TV is helping media companies with its AI-powered video personalization and programming platform. It allows publishers and content owners to surface contextually relevant content to audiences based on consumer viewing patterns.[97]

Beyond automation of writing tasks given data input, AI has shown significant potential for computers to engage in higher-level creative work. AI Storytelling has been an active field of research since James Meehan's development of TALESPIN, which made up stories similar to the fables of Aesop. The program would start with a set of characters who wanted to achieve certain goals, with the story as a narration of the characters’ attempts at executing plans to satisfy these goals.[98] Since Meehan, other researchers have worked on AI Storytelling using similar or different approaches. Mark Riedl and Vadim Bulitko argued that the essence of storytelling was an experience management problem, or "how to balance the need for a coherent story progression with user agency, which is often at odds."[99]

While most research on AI storytelling has focused on story generation (e.g. character and plot), there has also been significant investigation in story communication. In 2002, researchers at North Carolina State University developed an architectural framework for narrative prose generation. Their particular implementation was able faithfully reproduced text variety and complexity of a number of stories, such as red riding hood, with human-like adroitness.[100] This particular field continues to gain interest. In 2016, a Japanese AI co-wrote a short story and almost won a literary prize.[101]

Video games[edit]

In video games, artificial intelligence is routinely used to generate dynamic purposeful behavior in non-player characters (NPCs). In addition, well-understood AI techniques are routinely used for pathfinding. Some researchers consider NPC AI in games to be a "solved problem" for most production tasks. Games with more atypical AI include the AI director of Left 4 Dead (2008) and the neuroevolutionary training of platoons in Supreme Commander 2 (2010).[102][103]

Art[edit]

Artificial Intelligence has inspired numerous creative applications including its usage to produce visual art. The exhibition "Thinking Machines: Art and Design in the Computer Age, 1959–1989" at MoMA[104] provides a good overview of the historical applications of AI for art, architecture, and design. Recent exhibitions showcasing the usage of AI to produce art include the Google-sponsored benefit and auction at the Gray Area Foundation in San Francisco, where artists experimented with the DeepDream algorithm[105] and the exhibition "Unhuman: Art in the Age of AI," which took place in Los Angeles and Frankfurt in the fall of 2017.[106][107] In the spring of 2018, the Association of Computing Machinery dedicated a special magazine issue to the subject of computers and art highlighting the role of machine learning in the arts.[108] In June 2018, "Duet for Human and Machine,"[109] an art piece permitting viewers to interact with an artificial intelligence, premiered at the Beall Center for Art + Technology.[110] The Austrian Ars Electronica and Museum of Applied Arts, Vienna opened exhibitions on AI in 2019.[111][112] The Ars Electronica's 2019 festival "Out of the box" extensively thematized the role of arts for a sustainable societal transformation with AI.[113]

Utilities[edit]

Power electronics converters are an enabling technology for renewable energy, energy storage, electric vehicles and high-voltage direct current transmission systems within the electrical grid. These converters are prone to failures and such failures can cause downtimes that may require costly maintenance or even have catastrophic consequences in mission critical applications.[citation needed] Researchers are using AI to do the automated design process for reliable power electronics converters, by calculating exact design parameters that ensure desired lifetime of the converter under specified mission profile.[114]

Many telecommunications companies make use of heuristic search in the management of their workforces, for example BT Group has deployed heuristic search[115] in a scheduling application that provides the work schedules of 20,000 engineers.

Manufacturing[edit]

Robots have become common in many industries and are often given jobs that are considered dangerous to humans. Robots have proven effective in jobs that are very repetitive which may lead to mistakes or accidents due to a lapse in concentration and other jobs that humans may find degrading.

In 2014, China, Japan, the United States, the Republic of Korea and Germany together amounted to 70% of the total sales volume of robots. In the automotive industry, a sector with particularly high degree of automation, Japan had the highest density of industrial robots in the world: 1,414 per 10,000 employees.[116]

Sensors[edit]

Artificial Intelligence has been combined with many sensor technologies, such as Digital Spectrometry by IdeaCuria Inc.[117][118] which enables many applications such as at home water quality monitoring.

Toys and games[edit]

The 1990s saw some of the first attempts to mass-produce domestically aimed types of basic Artificial Intelligence for education or leisure. This prospered greatly with the Digital Revolution, and helped introduce people, especially children, to a life of dealing with various types of Artificial Intelligence, specifically in the form of Tamagotchis and Giga Pets, iPod Touch, the Internet, and the first widely released robot, Furby. A mere year later an improved type of domestic robot was released in the form of Aibo, a robotic dog with intelligent features and autonomy.

Companies like Mattel have been creating an assortment of AI-enabled toys for kids as young as age three. Using proprietary AI engines and speech recognition tools, they are able to understand conversations, give intelligent responses and learn quickly.[119]

AI has also been applied to video games, for example video game bots, which are designed to stand in as opponents where humans aren't available or desired.

Transportation[edit]

Fuzzy logic controllers have been developed for automatic gearboxes in automobiles. For example, the 2006 Audi TT, VW Touareg[citation needed] and VW Caravell feature the DSP transmission which utilizes Fuzzy Logic. A number of Škoda variants (Škoda Fabia) also currently include a Fuzzy Logic-based controller.

Today's cars now have AI-based driver-assist features such as self-parking and advanced cruise controls. AI has been used to optimize traffic management applications, which in turn reduces wait times, energy use, and emissions by as much as 25 percent.[2] In the future, fully autonomous cars will be developed. AI in transportation is expected to provide safe, efficient, and reliable transportation while minimizing the impact on the environment and communities. The major challenge to developing this AI is the fact that transportation systems are inherently complex systems involving a very large number of components and different parties, each having different and often conflicting objectives.[120] Due to this high degree of complexity of the transportation, and in particular the automotive, application, it is in most cases not possible to train an AI algorithm in a real-world driving environment. To overcome the challenge of training neural networks for automated driving, methodologies based on virtual development resp. testing toolchains[121] have been proposed.

Источник: [https://torrent-igruha.org/3551-portal.html]
, artificial intelligence software in applications Archives

Microsoft sacks journalists to replace them with robots

Dozens of journalists have been sacked after Microsoft decided to replace them with artificial intelligence software.

Staff who maintain the news homepages on Microsoft’s MSN website and its Edge browser – used by millions of Britons every day – have been told that they will be no longer be required because robots can now do their jobs.

Around 27 individuals employed by PA Media – formerly the Press Association – were told on Thursday that they would lose their jobs in a month’s time after Microsoft decided to stop employing humans to select, edit and curate news articles on its homepages.

Employees were told Microsoft’s decision to end the contract with PA Media was taken at short notice as part of a global shift away from humans in favour of automated updates for news.

One staff member who worked on the team said: “I spend all my time reading about how automation and AI is going to take all our jobs, and here I am – AI has taken my job.”

The individual added that the decision to replace humans with software was risky, as the existing staff were careful to stick to “very strict editorial guidelines” which ensured that users were not presented with violent or inappropriate content when opening their browser, of particular importance for younger users.

The team working on the Microsoft site did not report original stories but still exercised editorial control, selecting stories produced by other news organisations – including the Guardian – and editing content and headlines where appropriate to fit the format. The articles were then hosted on Microsoft’s website, with the tech company sharing advertising revenue with the original publishers.

Manual curation of news stories also ensured that headlines were clear and appropriate for the format, while encouraging a spread of political opinions and avoiding untrustworthy stories, while highlighting interesting articles from smaller outlets.

Some of the journalists now facing redundancy had longstanding experience in the industry, while for others it offered a foot in the door and a job in an industry which has seen wave after wave of cuts. They now face a tough challenge to get jobs elsewhere when the whole industry is looking to cut costs. Other teams around the world are expected to be affected by Microsoft’s decision to automate the curation of its news sites.

In common with other news organisations, PA Media is facing tough financial challenges and has had to furlough some staff and ask others to take pay cuts. The company has expanded outside its traditional news agency business, recently buying stock image business Alamy shortly before the pandemic devastated the media industry.

A spokesperson for the company said: “We are in the process of winding down the Microsoft team working at PA, and we are doing everything we can to support the individuals concerned. We are proud of the work we have done with Microsoft and know we delivered a high-quality service.”

A Microsoft spokesperson said: “Like all companies, we evaluate our business on a regular basis. This can result in increased investment in some places and, from time to time, re-deployment in others. These decisions are not the result of the current pandemic.”

Many tech companies are experimenting with uses for Artificial Intelligence in journalism, with the likes of Google funding investment in projects to understand its uses, although efforts to automate the writing of articles have not been adopted widely.

Источник: [https://torrent-igruha.org/3551-portal.html]
artificial intelligence software in applications Archives

Navy Center for Applied Research in Artificial Intelligence

The Navy Center for Applied Research in Artificial Intelligence (NCARAI) has been involved in both basic and applied research in artificial intelligence, cognitive science, autonomy, and human-centered computing since its inception in 1981. NCARAI, part of the Information Technology Division within the Naval Research Laboratory, is engaged in research and development efforts designed to address the application of artificial intelligence technology and techniques to critical Navy and national problems.

The research program of the Center is directed toward understanding the design and operation of systems capable of improving performance based on experience; efficient and effective interaction with other systems and with humans; sensor-based control of autonomous activity; and the integration of varieties of reasoning as necessary to support complex decision-making. The emphasis at NCARAI is the linkage of theory and application in demonstration projects that use a full spectrum of artificial intelligence techniques.

The NCARAI has active research groups in Adaptive Systems, Intelligent Systems, Interactive Systems, and Perceptual Systems.

Contact:
Email: aicgroup@nrl.navy.mil

Release Number: 13-1231-3165

Источник: [https://torrent-igruha.org/3551-portal.html]
.

What’s New in the artificial intelligence software in applications Archives?

Screen Shot

System Requirements for Artificial intelligence software in applications Archives

Add a Comment

Your email address will not be published. Required fields are marked *